Search - Number 24 - MULTIFRACTALITY AND CHAIN REACTIONS

MULTIFRACTALITY AND CHAIN REACTIONS
Cover not present MULTIFRACTALITY AND CHAIN REACTIONS
Category: Number 24
Publication: 24
Summary

Multifractal model for the evolution of neutrons in the reactor considered. For chain reactions are multifractal dimension of the multifractal support, information and correlation dimensions, entropy of fractal set, maximum and minimum dimensions, function of multifractal spectrum and other characteristics of the multifractal behavior of the neutrons are obtained. Using the geometric characteristics of the multifractal can describe the stochastic system hierarchically subordinate statistical ensembles characterized Cayley trees. A stationary distribution of the hierarchical levels, which reduces to a power Tsallis law. Shows some possibilities of using fractal patterns in the theory of nuclear reactors.

Keywords: multifractality, generalized dimension, multifractal spectrum.

REFERENCES

1. Feder E. Fractals. - New York: Plenum Press, 1988. – 260 p

2. Bozhokin S.V., Parshin D.A. Fractals and multifractals. - Izhevsk: NITs "Regular and Chaotic Dynamics", 2001. – 128 p. (Rus)

3. Tsallis, Constantino. Introduction to nonextensive statistical mechanics: approaching a complex world (Online-Ausg. ed.). - New York: Springer, 2009. - 456 p.

4. Klimontovich Y.L. Introduction to the physics of open systems. – Moskwa: Janus-K, 2002. - 284 p. (Rus)

5. Efros A.L. Physics and Geometry ofdisorder. – Moskwa: Nauka, 1982. - 176 p. (Rus)

6. Sevastiyanov B.A. Branching processes. - Moskwa: Nauka, 1971. - 436 p. (Rus)

7. Dorogov V.I., Chistyakov V.P. Probabilistic  models  of  particles  transformations. - Moscow: Nauka, 1988. – 111 p. (Rus)

8. Pavlov A.N., Anishchenko V.S. Multifractal analysis of complex signals // Uspehi fizicheskih nauk, 2007. - Vol 177, № 8. - P. 859 - 876. (Rus)

9. Shuda I.A. Influence of the hierarchical structure and self-similarity to self-organization of complex systems: Dis. .... Doctor. phys.-math. sciences. – Sumy, 2011. (Rus)

10. Olemskoy A.I. Synergetics of complex systems. Phenomenology and statistical theory. - Moskwa: Krasand, 2009. - 379 c. (Rus)

11. Olemskoi A.I., Flath A.Y. Using fractal concepts in condensed-matter physics // Uspehi fizicheskih nauk. - 1993. - Vol. 163, № 12. - P. 1 - 50. (Rus)

12. Tsallis C. Possible Generalization of Boltzmann-Gibbs Statistics // J. Stat. Phys. - 1988. - Vol. 52, No. 1. - P. 479 - 487.

13. Beck C., Cohen E.G.D. Superstatistics // Physica A. - 2003. - Vol. 322A. - P. 267 -275.

14. Ryazanov V.V., Shpyrko S.G. First-passage time: a conception leading to superstatistics // Condensed Matter Physics. - 2006. - Vol. 9, No. 1 (45). - P. 71 - 80.

15. Ryazanov V. Neutron Energy Distribution in a Nuclear Reactor Taking Account of the Finiteness of the Neutron Lifetime // Atomic energy. - 2005. – Vol. 99, № 5. - P. 782 - 786.

16. Ryazanov V. Neutron number first-passage time distribution and the reactor time constant // Atomic energy. - 2011. - Vol 110, № 6. - P. 376-388.

17. Zelenyi L.M., Milovanov A.B. Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics // Uspehi fizicheskih nauk. - 2004. - Vol. 174, № 8. - P. 809 - 852. (Rus)

18. Uchaikin V.V. Similar anomalous diffusion and stable laws // Uspehi fizicheskih nauk. - 2003. - Vol. 173, № 8. – P. 847 -876. (Rus)

19. Schroeder M. Fractals, Chaos, Power Laws. Minutes from an Infinite Paradise. - Izhevsk: RHD, 2001. – 528 p. (Rus)

20. Mandelbrot B. B. The Fractal Geometry of Natura. - San Francisco: Freeman, 1982. - 530 p.

21. Bartholomew GG, Bat G.A., Baybakov V.D., Altukhov M.S. Fundamentals of the theory and methods of calculation of nuclear power reactors. – Moskwa: Energoizdat, 1982. – 511 p. (Rus)

 

22. Ben-Avraham D., Havlin S. Diffusion and Reactions in Fractals and Disordered Systems. - Cambridge: Cambridge University Press, 2000. - 316 p.