Search - Number 26 - PERCOLATION DESCRIPTION OF BEHAVIOR OF CHAIN REACTION

PERCOLATION DESCRIPTION OF BEHAVIOR OF CHAIN REACTION
Cover not present PERCOLATION DESCRIPTION OF BEHAVIOR OF CHAIN REACTION
Category: Number 26
Publication: 26
Summary

With strict ratios percolation theory on the Bethe lattice describes the behavior of the neutron multiplication factor in the early stages of development of a self-sustaining chain reaction of nuclear fission. The behavior of the probability of percolation, in this problem - the probability for a self-sustaining chain reaction and derived from this value. Shown the possibility of determining the boundaries of the critical region and found a variety of distribution for the percolation probability for large numbers of neutrons generations. Depending on the proximity of the probability of neutron fission of the nucleus to the critical distinction between the different modes in which changes and the type of distribution, and flux of neutrons and neutrons geometric trajectory of motion.

Keywords: percolation, chain reactions, Cayley trees, the risk of a self-sustaining chain reaction.

REFERENCES

1. Tarasevich Yu. Yu. Percolation theory, applications, algorithms. - Moskva: URSS, 2002. - 112 p. (Rus)

2. Efros A. L. Physics and geometry of disorder. (Library of "Quantum", no. 19). - Moskva: Nauka, 1982. 176 p. (Rus)

3. Stauffer D., Aharony A. Introduction to percolation theory. - Taylor & Francis Inc., 1994. - 179 p.

4. Feder E. Fractals / Trans. from English. - Moskva: Mir, 1991. - 260 p. (Rus)

5. Kesten H. Percolation theory for mathematicians. - Moskva: Mir, 1986. - 392 p. (Rus)

6. Shklovskii B. I., Efros A. L. The electronic properties of doped semiconductors. - Moskva: Nauka, 1979. – 416 p. (Rus)

7. Mandelbrot B. B. Fractals: Form, Chance, and Dimension. - San Francisco: Freeman, 1977. - 752 p.

Mandelbrot B. B. The Fractal Geometry of Natura. - San Francisco: Freeman, 1982. - 530 p.

8. Ryazanov V. V., Turbin A.F. Tree structures, the problem of percolation and fractal phenomena in multiplying environment. Proc. Dokl. seminar-meeting "Fractal objects in mathematics, physics and biology", 25 - 27 April 1991, Slavyansk. - Kiev: Oh of "Knowledge" of Ukraine, 1991. - P. 17. (Rus)

9. Green L. M., Milovanov A. B. Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics // Successes of physical sciences. - 2004. - Vol. 174, № 8. - P. 809 - 852. (Rus)

10. Ryazanov V. V. Fractal structures and percolation in nuclear reactor // Problemy bezpeky atomnyh electrostantsiy i Chornobylya (Problems of nuclear power plants' safety and of Chornobyl). - 2014. - Iss. 23. - P. 13 - 21. (Rus)

11. Ryazanov V. V. Multifractality neutron processes in a nuclear reactor // Problemy bezpeky atomnyh electrostantsiy i Chornobylya (Problems of nuclear power plants' safety and of Chornobyl). - 2015. - Iss. 24. - P. 9 - 17. (Rus)

12. Bak P., Tang C, Wiesenfeld K. Self-organized criticality // Phys. Rev. A. - 1988. - Vol. 38, № 1. - P. 364-374.

13. Schroeder M. Fractals, chaos, power laws. Thumbnails of an infinite paradise / Trans. from English. - Izhevsk: RHD, 2001. - 528 p.

14. Shuda I. A. Influence of the hierarchical structure of self-organization and self-similarity on the complex systems: Dis. .... Doctor phys.-math. sciences. - Sumy, 2011. (Rus)

15. Olemskoy A. I. Synergetic of complex systems. Phenomenology and statistical theory. - Moskva: Krasand, 2009 - 379 p. (Rus)

16. Olemskoy A. I., Flat A. Y. Using fractal concepts in condensed matter physics // Successes of physical sciences. - 1993. - Vol. 163, № 12. - P. 1 - 50. (Rus)

17. Bozhokin S. V., Parshin D. A. Fractals and multifractals. - Izhevsk: NITs "Regular and Chaotic Dynamics", 2001. - 128 p. (Rus)

18. Sevastyanov B. A. Branching processes. - Moskva: Nauka, 1971. - 436 p. (Rus)

19. Dorogov V. I., Chistyakov V. P. Probabilistic Model of particle transformations. - Moskva: Nauka, 1988 – 110 p. (Rus)

20. Harari F., Palmer E. Enumerating graphs / Trans. from English. - Moskva: Mir, 1977. - 324 p. (Rus)

21. Antonova E. S., Virchenko Yu. P. Continuity Bernoulli percolation probability of random fields on homogeneous wood columns // Scientific statements of Belgorod State University. Series: Mathematics. Physics. - 2010. - Vol. 23 (94), № 21. - P. 11 - 21. (Rus)

22. Cohen R., Havlin S. Complex networks: Structure, Robustness and Function. - Cambridge: Cambridge University Press, 2010. - 330 p.

23. Ryazanov V.V. Lifetime of statistical systems. - Saarbrücken: LAP LAMBERT Academic Publishing, 2014. – 252  p.

24. Boyko R. V., Ryazanov V. V. Stochastic model of nuclear power reactors // Nuclear Energy. - 2002. - T. 93, № 2. - P. 87 - 96. (Rus)

 

25. Zweifel P. Reactor Physics. - Moskva: Atomizdat, 1977. - 342 p. (Rus)