Search - Issue 31 - ESTIMATION OF THE PARAMETER OF THE ROUGHNESS OF THE TERRITORY OF UKRAINE ON DIFFERENT SPACE SCALE FOR MODELS OF ATMOSPHERIC TRANSPORT AND DEPOSIT OF POLLUTANTS

ESTIMATION OF THE PARAMETER OF THE ROUGHNESS OF THE TERRITORY OF UKRAINE ON DIFFERENT SPACE SCALE FOR MODELS OF ATMOSPHERIC TRANSPORT AND DEPOSIT OF POLLUTANTS
DOI: https://doi.org/10.31717/1813-3584.18.31.2
Cover not present ESTIMATION OF THE PARAMETER OF THE ROUGHNESS OF THE TERRITORY OF UKRAINE ON DIFFERENT SPACE SCALE FOR MODELS OF ATMOSPHERIC TRANSPORT AND DEPOSIT OF POLLUTANTS
Category: Issue 31
Author: Lev Т. D.
Publication: 31
Summary

In the models of atmospheric transport of pollutants, the roughness parameter, as a dynamic characteristic of the underlying surface, becomes important. The parameter of roughness directly affects the processes of deposition and retention of radioactive substances, and therefore the values of aerial contamination of vegetation in the acute phase of the accident and the contamination of the soil and the underlying surface for long-term forecasting of contamination plant and products. The paper analyzes and systematizes the empirical data on the roughness parameter obtained from different sources from 1960 to the present. In accordance with the features of the underlying surface of the territory of Ukraine, the data on the roughness parameter were selected and interpolated into cells of the regular network for different spatial scales. A statistical analysis of the assessment of the homogeneity of the underlying surface (roughness parameter) over the territory was carried out with the calculation in each grid cell of the percentage of the area of each class of the underlying surface that fell into the grid. The classification of the territory according to the percentage of uniformity of the underlying surface within the grid cell showed that for all classes in 63% of cases of the total number of cells adequate identification of the class of the underlying surface within the grid cell is provided to 100%.With the use of actual cartographic material and GIS technologies, roughness maps for 4 seasons of the year were built for the whole territory of Ukraine. Algorithms for estimating the roughness parameters at the local level for areas of influence zones of nuclear power plants and urbanized territories were proposed.

Keywords: roughness, underlying surface, classification, geoinformation analysis, mapping.

REFERENCES

1. Zylytynkevych S. S. Dynamics of the boundary layer of the atmosphere / S. S. Zylytynkevych. – Leningrad : Hydrometeorolohycheskoe izdatel'stvo, 1970. - 292 p. (Rus)

2. Dubov A. S. Turbulence in vegetation / A. S. Dubov, L. P. Bykova, S. V. Marunych. - Leningrad : Hydrometeoizdat, 1978. - 179 p. (Rus)

3. Byzova N. L. Turbulence in the boundary layer of atmospheres / N. L. Byzova, V. N. Yvanov, E. K. Harher. - Leningrad : Hydrometeoizdat, 1989, 263 p. (Rus)

4. H. van Dop. Terrain classification and derived meteorological parameters for interregional transport models / H. van Dop // Armosphuic Encironmrnr. - 1983. - Vol. 17. No. 6. - P. 1099 - 1105.

5. Klaassen W. Landscape variability and surface flux parameterization in climate models / W. Klaassen, M. Claussen // Agricultural and Forest Meteorology. – 1995. - Vol. 73. - P. 181 - 188.

6. The Numerical Wind Atlas / Helmut P. Frank et al. The KAMM/WAsP Method. Risø National Laboratory, Roskilde, Denmark. June 2001. Risø–R–1252(EN).

7. MVR.45090.40038 Methodical instructions. Calculation of permissible emissions of radioactive substances from the nuclear power plant to the atmosphere. - Moskva, 2004. – 49 p. (Rus)

8. Spatially-varying surface roughness and ground-level air quality in an operational dispersion model / M. J. Barnes et al. // Environmental Pollution. – 2014. - Vol. 185. – P. 44 - 51.

9. Davenport A. G. Rationale for determining design wind velocities / A. G. Davenport // J. Atm. Soc. Civ. Eng. – 1960. - ST-86. – P. 39 - 68.

10. Panofsky H. A. Wind profiles and change of terrain roughness at Riso / H. A. Panofsky and E. L Petersen // Quart. J. R. Met. SOC. – 1972. – Vol. 98. - P. 845 - 854.

11. Wieringa J. Roughness-dependent geographical interpolation of surface wind speed averages / J. Wieringa // Quart. J. R. Met. Soc. - 1986. - Vol. 112. - P. 867 - 889.

12. Wieringa Jon. Updating the Davenport roughness classification / Jon Wieringa // Journal of Wind Engineering and Industrial Aerodynamics. - 1992. - Vol. 41 - 44. - P. 357 - 368.

13. Wieringa Jon. Representative roughness parameters for homogeneous terrain / Jon Wieringa // Boundary Layer Meteorology. – 1993. – Vol. 63. – P. 323 – 363.

14. New revision of Davenport roughness classification / Jon Wieringa et al. // 3rd European Conference on Wind Engineering, Eindhoven, Netherlands, July 2001.

15. Agterberg R. Mesoscale terrain roughness mapping of the Netherlands. Technical reports / R. Agterberg and J. Wieringa ; TR-115. KNMI. 1989. – 35 p.

16. Bottema M. Landscape roughness parameters for Sherwood forest – Experimental results / M. Bottema, W. Klaassen, W. P. Hopwood // Boundary-Layer Meteorology. – 1998. – Vol. 89. – P. 285 – 316.

17. Grimmonda C. S. B. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form / C. S. B. Grimmonda and T. R. Oke // Journal of Applied Meteorology. - September 1999. - Vol. 38, No. 9. - P. 1262 - 1292.

18. Symyu Э. The impact of wind on buildings and architecture / Э. Symyu, R. Skanlan ; Translation from English B. E. Maslova, A. V. Shvetsovoy. – Moskva : Stroyizdat, 1984. – 361 р. (Rus)

19. Bryukhan' F. F. Estimation of meso roughness from radio-atmospheric sounding of the atmosphere over the territory of the USSR / F. F. Bryukhan', L. V. Ponomarenko // Meteorolohiya i hydrolohiya. – 1989. – № 4. – P. 65 – 70. (Rus)

20. Lev T. D. Informational, analytical and cartographic support of NPP emergency response systems / T. D. Lev, O. H. Tyshchenko, V. N. Pyskun // Problemy bezpeky atomnykh electrostantsiy i Chornobylya (Problems of Nuclear Power Plants' Safety and of Chornobyl). - 2011. - Iss. 16. - P. 17 - 26. (Rus)

21. Scenario for verification of mathematical models of atmospheric transport from measurements of radioactive contamination in Korosten and Korosten district as a result of the Chernobyl accident / E. K. Garger et al. // Problemy bezpeky atomnykh electrostantsiy i Chornobylya (Problems of Nuclear Power Plants' Safety and of Chornobyl). - 2011. Iss. 17. - P. 112 - 123. (Rus)

22. Land Cover Classification Legend // https://forobs.jrc.ec.europa.eu/products/glc2000/legend.php.

23. Bartholome E. GLC2000: a new approach to global land cover mapping from Earth observation data / E. Bartholome, A. S. Belward // International Journal of Remote Sensing. – 2005. – Vol. 26. – Iss. 9. - P. 1959 – 1977.

24. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM + data / Peng Gong et al. // International Journal of Remote Sensing. - 2013. – Vol. 34. – Iss. 7. - P. 2607 – 2654.

25. Lev T. D. Taking into account the microclimatic features of the territory for the optimal location of control points for aerial meteorological information for nuclear plant emissions / T. D. Lev // Problemy bezpeky atomnykh electrostantsiy i Chornobylya (Problems of Nuclear Power Plants' Safety and of Chornobyl). - 2013. – Iss. 21. - P. 64 - 73. (Rus)

26. Stepanenko S. N. Calculation of wind speed in the lower 300-meter layer of the atmosphere according to meteorological observations taking into account the temperature stratification and surface roughness / S. N. Stepanenko, V. H. Voloshyn, V. Yu. Kuryshyna // Ukr. hidrometeorol. Zhurnal. – 2016. - № 17. - P. 23 - 30. (Rus)

27. Mlyavaya H. V. Influence of the roughness parameters of the underlying surface on the wind speed / H. V. Mlyavaya // Buletinul AŞM. Ştiinţele vieţii. – 2014. - No. 2(323). – P. 181 - 187. (Rus)